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Most of the entries of stiffness matrices that arise in spline and FE solution of pseudo- 
differential equations do not include singular integrals, while a few do. The former can be 
approximated with a variety of techniques including numerical integration and asymptotic 
formulas. In the present paper we show how to avoid evaluating singular integrals once non- 
singular entries have been computed. This approach works in conjunction with Galerkin or 
least squares uniform spline or FE approximation in solving homogeneous pseudodifferential 
equations. 0 1988 Academic Press, Inc 

1. INTROD~JCTI~N 

The boundary integral method (BIM) often emerges as a method of choice for 
solving various physical problems [S, 9, 12,. 141. Advantages offered by boundary 
integral formulations are well known: 

-reduction by 1 of the dimension of equations: 
-representation of an approximate solution in analytic form. 

The main drawback is in that the resulting integral equation is considerably more 
complicated and hard to handle numerically than the original differential equation. 

A customary engineering approach to solving boundary integral equations 
utilizes collocation paired with piecewise constant approximation of the unknown 
solution [S]. In this setting the approach is known as the boundary element 
method (BEM). In recent years an alternative to BEM in the form of the Galerkin 
method has been rigorously investigated [2, 4, 6, 11, 14, 151. Allowing for more 
sophisticated kinds of approximation, the Galerkin method is theoretically superior 
to BEM. Also it is equally applicable to solving unilateral problems [ 1,2, 61. 
However, in practice, the Galerkin method leads to very involved computations of 
stiffness matrices. 

It is our purpose in the. present note to discuss a simple, fast, and accurate 
method for computing these stiffness matrices. It is best to consider the general 
framework of pseudodifferential equations. For different kinds of pseudodifferential 
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equations that appear in practice, see [6, 141. In Section 3 we shall concentrate on 
two important problems from the elasticity theory. 

The method for computing stiffness matrices as presented in this note is not 
universal and requires the following two conditions: 

-the operator of the governing equation is homogeneous with constant coef- 
ficients, see (2.3) and [6, 141; 

-the grid is uniform, see (2.4). 

Neither condition imposes serious restrictions on applicability of the method. As 
far as BIM is concerned most operators would satisfy the first requirement, while 
the second, on the other hand, is standard for the Galerkin solution of integral 
equations on flat surfaces and should be satisfied only locally on curved surfaces. 

Under the above two conditions, entries of the stiffness matrices depend (see Sec- 
tion 2) on the meshsize parameter h through a multiplicative constant and, in fact, 
are to be computed just once. However, the complexity of the integrals involved is 
at times such that in some instances [7, lo] the integrals are approximated to as 
few as 5 significant digits only. 

The method we are about to describe is based on the following observation. Of 
the entries of stiffness matrices only a few include singular integrals. The majority 
can be split into sums of integrals of analytic functions. The latter can, in principal, 
be evaluated to an arbitrary degree of precision. Roughly speaking, in the 
circumstances.described above it is possible to form an algebraic system of linear 
equations with singular entries as its unknowns and the right-hand side related to 
the analytic entries. This allows one to approximate singular entries as accurately 
(and with little additional expense) as the analytic ones. 

The method can be used to approximate principal parts of entries in the 
framework of Galerkin-collocation method on curved surfaces, see [8, 14, 151. 

It is nex,t to impossible to compare computational efforts required for evaluating 
the stiffness matrices. And because the entries must be computed once and for all, 
such comparison does not bear any significance. What is more important is the 
amount of preparatory work and effort spent on implementation of a particular 
strategy for computing those integrals. None of the methods used so far 
[I, 7, 8, 10, 151, of which all are based on some kind of numerical integration, is 
sufficiently general to work without major modifications for a different kind of 
equations than the one it was devised for. 

2. UNIFORM FINITE DIMENSIONAL SPACES 

We consider a problem of solving 

Au =f (2.1) 
in a bounded open region D c [WN, Na 1, with A a pseudodifferential operator 

Au=F-‘(A(5)Fu), PER”‘, (2.2) 
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where F and F- ’ stand for the (generalized) Fourier and inverse Fourier transfor- 
mations, respectively. A(t), which is the symbol of the operator A, is assumed to be 
homogeneous of order a, i.e., 

A(G) = t”A(S), t > 0. (2.3) 

Numerous examples of such operators can be found in [6, Section 31. 
We assume there is given a fuction $ E L2( RN) with compact support, and for all 

h > 0 define a family of functions 

IC/,,hb) = e (t-p), (2.4) 

p E N N. Let, e.g., Nh = { p : ph E D} and l$’ = span { $p,h : p E N,,} : then the Galerkin 
method consists in finding u,, E l$’ such that 

(Au,, 01,) = <f, v,>, all vLe V,D, (2.5) 

where ( ., . > is the scalar product in L2(iRN) extended to the pairing of some spaces 
of generalized functions. 

If uh = c, E I’!,, ‘p &,h then (2.5) is equivalent to 

It is the question of evaluating the stiffness matrix (( A$,,, tiq,h)) that we intend 
address in the present note. In the following lemma, which can be easily shown by a 
few applications of the Fourier transform, we state an essential property of the 
entries (Atip,h, tiq,h). 

LEMMA 2.1. Assume A satisfies (2.3). Then 

(A&,,,, $q,h) =hN--G%,,, ‘&,I>. 

For simplicity we shall write II/, = Ic/,, I . Thus we have 

GWp,h, IClq,d =hN-a(Atio, t&J (2.7) 

which means that once the entries (A$,, tj,) have been computed we may proceed 
with the Galerkin method (2.6) for any h >O. Therefore our problem reduces to 
evaluating (A$,, JI,, ). 

At this point we need an additional assumption regarding the spaces Vf. We 
assume that 

where vh=span{$,,&:pE IV”>. 
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This assumption holds for all common finite element spaces and spline spaces 
(and their tensor products) over uniform grids. For finite element spaces it follows 
by construction, while for spline spaces (2.8) it is a consequence of the following 
lemma. 

LEMMA 2.2. Let {B,,(u)}~ be the family of uniform B-splines of degree n with 
(n - 1) continuous derivatives. Then 

B ’ 0.n 
0 z 

=$;i’ C;+‘BJu). 
J=o 

(2.9) 

We believe the identity (2.9) is known but have failed to find a proper reference. 
It is quite easily shown by comparing Fourier transforms of both sides. From (2.8), 

where the sum is finite. Hence from (2.4), 

(2.10) 

Now introduce aP= (A$,, $,) and substitute the sum (2.10) into aP: 

By Lemma 2.1 one then has 

q-,=x (kqk2a-N)a2p+,-q. 
q.r 

(2.11) 

Thus every coefficient aP is a linear combination of some other coefficients. 
Note here that if supp e. n supp II/, # @ then ap includes, in general, a singular 

integral, while if supp tie n supp $P = a, aP can be split into a sum of integrals of 
analytic functions. Assuming that the job of computing the latter is much simpler 
than in the former case, we want to use (2.11) to express “difficult” aP’s in terms of 
the “easy” ones. In general, (2.11) leads to an algebraic system of a few linear 
equations. 

Remark 2.3. One may use various criteria to differentiate between difficult and 
easy terms a,,. On the whole, a method would more accurately compute a,% with 
larger p’s than with smaller ones. 

In the next section we use (2.11) to approximate the stiffness matrix {a,] for two 
problems that arise in the elasticity theory. 
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3. CRACK AND STAMP PROBLEMS 

In this section we consider only N = 2 and A(<) = 15 1’) 1 ~11 < 2, where a E R, 
5 = (rl, t2) E R*, 1 <I = (t: + g:)“‘. Written explicitly, (2.2) becomes 

with iY=Fu, x=(x1,x2)~!R2, and x.~=x~~,+x~<~. As is well known, a=1 and 
CI = - 1 correspond to the Crack and Stamp problems, respectively, see [4, 6, 9, 11, 
131. 

To solve (2.1) we choose bilinear finite elements formed as in (2.4) with 

(1-lxll)(1-lx*l)~ 1x117 1x21 G 1 
3 otherwise. (3.2) 

The spaces V, can be thought of as the tensor products of one-dimensional linear 
spline spaces. Therefore as an application of Lemma 2.2 we have 

LEMMA 3.1. With I,/I~,~ defined by (2.4) and (3.2) the following identity holds: 

1C/P,h(X) = Ic/2p,hI2(X) + tw2p1+ l,Zpz, h/Z(X) + e2p,- 1,2p*, h/2(4 

+ +2p,,2pz+ l,h,2(X) + ti2p,,2p,- l,h,Z(XN 

+ $(JI 2p1+ I,Zpz+ I,hlZ(X) + v52p,- 1,2pz+ 1, h,ZW 

+ 1c/2p*+ 1,2p2- l,h,2(4 + IIIzp,- 1,2p2- l,h,2W)~ 

wherep=(p,,p2)EN2. 

Since A(c) = I < Ia, (2.7) becomes 

/,-a 
- 

(Al(/p,h, tb) = (242 
151” q’(r) ei(P-4)‘5 dl. 

(3.3) 

(3.4) 

In other words, apq actually depends symmetrically on I pi - q1 I and I p2 - q2 I. 
Therefore it is sufficient to evaluate ap for 0 <p2 Gpl. To set up the algorithm we 
arrange those p’s in the lexicographic order 

(O,O), (1, Oh (1, 11, (TO), **-. (3.5) 

Now, choose some 0 < KE N and consider ap)s with p, < K. For each such p, 
split the sum in (2.11) into two parts: one with max{ 12p, + rl - q1 1, 
( 2p, + r2 - q2 I} > K, and the order for which the inverse inequality holds. As we 
shall see presently the first part is approximated quite accurately and easily for K 
sufticiently, but not unreasonably large. 
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The vector aK consists of u,‘s arranged according to (3.5) with p, <K. Then 
8~ R(K+1)(K+2)‘2. The procedure leads to a linear system 

aK = BKaK + bK (3.6) 

of (K + 1 )(K + 2)/2 equations with as many unknowns. Matrix BK is formed by 
sums of products of 1, 4, $ (see (3.3)), and components of the vector bK are linear 
combinations of up’s with p > K. 

PROPOSITION 3.2. For K > 1 and a # 0, system (3.6) has a unique solution. 

Proof First of all, it is clear that (3.6) has a solution since the actual entries a,, 
do satisfy the system. We use induction on K to prove the uniqueness. For K = 2, 
we have a 6 x 6 system and by direct inspection find that the matrix B2 has the form 

I 

9.2-4 3.2-l 1 * * * 
3.2-5 2-l 2-l * * * 

2” 
2-6 2-3 2-2 * * * 

0 0 

I 

0 3.2-’ 2-’ * ’ 

0 0 0 2-6 2-4 * 
0 0 0 0 0 2-6 

where stars stand for some nonzero numbers. Its eigenvalues are easily found to be 

2cc, 2or-2, 2z-3, ~a-4, ~a-5, ~a-6. 
(3.7) 

Therefore if, as we have assumed, 1 D! 1 < 2 and a # 0 the system (3.6) has a unique 
solution for K= 2. 

Next, assume it has a unique solution for K= m, m > 1. Consider (3.6) with 
K=m+ 1. We claim that in rows of B”+’ corresponding to p’s with p1 = m + 1, all 
the entries are 0. Indeed, from (3.3) and ap = (A$,, rc/,,) it follows that in the rows 
of B” + ’ all entries are 0 provided 

2p,-2>m+ 1. 

With p1 = m + 1 this reduces to 

2m>m+l 

or m > 1. Hence aP’s with p, = m + 1 coincide with the corresponding components 
of bm+’ and the latter are computed in a well-defined manner. 

Finally, if we transfer all a,‘~, p1 = m + 1, from B” + ‘8’ + ’ to b” + r and drop all 
redundant equations we shall have the system a” = Bmam + b” which by the 
inductive assumption does haves a unique solution. This constitutes the part of 
(m + 1 )(m + 2)/2 first components of urn + ‘. Therefore all of urn+ r is uniquely deter- 
mined by (3.6). 1 
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From the propsition we see that it is possible to compute all entries up once we 
know aP with max { 1 p1 1, 1 p2 I} > K for some K> 1. To evaluate the latter there is a 
very handy asymptotic formula, [6, Lemma 26.11. 

From (3.4) it follows that u,‘s are values of the Fourier transform of the function 
l<latJ(() at x=p. Since 

sin2(r1/2) sin2(c2/2) 2 
3’(<)=( (&/2)2 . (r2/2)2 ’ 1 

the Taylor series of q’(r) is readily available. In particular, 

l-j’(<)= l-6+=+360--- 1512 lrl” t2r: 17151” 5:5:l~lz+*~~, 
3024 2520 (3.8) 

Now (3.8) and some known properties of the Fourier transform lead to the 
following asymptotic formulas. 

LEMMA 3.3. As ( p I + 00 the following expansions hold: 

1 19 7r2r2 61 3r2r2 
ap=2n ‘+- - - - - 

Irl 6 Ir13+240 (r15+ 24;ry9+672 lrj7+ 8 ];I” 
+ Wlrl-9) (3.9.1) 

lf a = - 1 (Stamp problem), and 
3 41 21r2r2 499 i+- - - - 99r2 r2 - 

21r15 +16 lr17+ 8 lr111’+96 lrj9+ 8 I:,‘: 
+O((r(-“) (3.9.2) 

if a = - 1 (Crack problem). 

4. NUMERICAL RESULTS 

We have solved the system (3.6) for a = + 1 using the standard IMSL routine 
LEQTlF in double precision on a PRIME 950 machine. Since (3.9) does not 
provide an explicit accuracy estimate we ran our program with different K. Some 
sample computations are summarized in the Tables I and II. 

TABLE I 

Standard IMSL Routine LEQT 1F for GL = - 1 

(09 1) (L2) (374) 

8 0.132576662426E2 0.74273188724061 0.292284568059El 0.126532434331El 
9 0.132576662471E2 0.742731887498El 0.29228456816261 0.12653243435OEl 

10 0.132576662489E2 0.74273188759981 0.2922845682OOEl 0.126532435354El 
11 0.132576662497E2 0.75273188764981 0.292284568217El 0.126532434354El 
12 0.1325766625OlE2 0.742731887670El 0.292284568223El 0.126532434354El 
13 0.132576662502E.2 0.742731887677El 0.292284568224El 0.126532434354El 
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TABLE II 

Standard IMSL Routine LEQT 1F for c( = 1 

(O,l) (1>2) (3,4) 

15 0.92500318122 0,2826451812E-2 -0.22389679546 - 2 -O.l356833019E- 3 
16 0.92500318137 0.28264518128-2 - 0.22389679546 - 2 -0.13568330196-3 
17 0.92500318146 0.2826451813E-2 - 0.2238967954E - 2 -0.13568330196- 3 
18 0.92500318152 0.2826451813E-2 -0.2238967954E - 2 -0.13568330196- 3 
19 0.92500318155 0.28264518136- 2 -0.2238967954E - 2 -O.l356833019E- 3 
20 0.92500318157 0,2826451813E-2 -0.2238967954E - 2 -0.13568330198-3 

As it was noted in the proof of Proposition 3.2, some rows of the matrix B 
contain only zeros. This is true for the rows corresponding to the p’s that satisfy 

2p,-2>K. (4.1) 

Taking (4.1) into account reduces the size of the system by a factor of 24, 
depending on the magnitude of K. Furthermore, using the same idea repeatedly and 
a kind of a block backsubstituion, the problem of solving (3.6) actually reduces to 
that of solving a 6 x 6 system with the matrix B2 and updated column b2. Thus the 
method is extremely fast. 

It can also be shown that M < 0 the iterative process based on (3.6) converges. 
The number of iterations needed to attain convergence within 10-l’ is a slowly 
increasing function of K, which for K= 7, . . . . 13 ranged between 40 and 60 
iterations. The solution coincided with that obtained by the direct method. 

Remark 4.1. The improved accuracy in computing the integrals up did not have 
any serious impact on accuracy of numerical solution to the Stamp problem. This 
may be explained by the fact that for the unilateral Stamp problem the convergence 
in L2-norm is O(h1j2) [4, 61. However, an improved formulation that uses weighted 
finite elements (see [3]) promises convergence 0(/z’) in L2-norm. Thus we hope 
that in this case the effect of errors in computing a,,‘~ will be more pronounced. 
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